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J. Phys.: Condens. Matter 3 (1991) 7095-7115. Printed in the UK 

Theory of neutron scattering by atomic electrons: 
jj-coupling scheme 

Ewald Balcart and Stephen W Loveseyfs 
t Atominstitute of the Austrian Universities, A-1020 Vienna, Austria 
$ Rutherford Appleton Laboratory, Oxfordshire OX11 OQX, UK 
5 h t i t u t e  of Physics, Uppsak University, S-751 21, Sweden 

Abstract. Expressions are =ported for the malriv element of the neutron-olectron 
interaction for atonlic electrons in a j" configuration, appropriate for palladium and 
platinmi group compom~ds and rare earth and actinide materials. For the latter, 
I-clntron systems, an isolated ion is a realistic approximation. Compact exprec 
sioiw are provided, together with tables of reduced matrix elements, for elastic and 
inelastic structure factors, and compared with the corresponding Russell-Saunders 
expressions. Inelastic scattering by two f-electrons, including non-epuivdent states, 
is presented in detail. 

1. Iu t roduc t iou  

Neutron scattering is a well proven technique for the study of magnetic properties 
of bulk matter; see for example Price and Skmld (1986). The scattering amplitudes 
for both elastic and inelastic events depend strongly on the magnitude of the scatter- 
ing wavevector II. because the de Broglie wavelength matches the atomic dimensions. 
This feature is exploited to give information on t,he spatial properties and identify the 
atomic states engaged in  scattering. Furthermore, neutron spectroscopy is not pre- 
scribed by the dipole selection rule. As a consequence, neutron atomic spectroscopy 
contains a wealth of information, some of which cannot be obtained using other tech- 
niques. 

Bragg scattering is routinely used to provide accurate magnetization density maps 
which are confronted with theoretical calculations based on band theory or a local 
density approximation, e.g. Brown e t  d (1990) and Lindgren (1989). Spectroscopic 
studies of magnetic salts and metallic magnets directly provide crystal field energy 
levels (Stirling aud McEwen 1987). 

In the past few years the range of energies accessible for spectroscopy has in- 
creased significantly, so much so that transitions between intermultiplet atomic states 
(Coulomb excitations) can be studied. Thus far, experiments on rare earth and ac- 
tinide (f") compounds and metals have been reported (Osborn et al 1991) and work 
on palladium (4d") and platinum (5d") groups of compounds might be expected. Ob- 
served transitions include both dipole allowed and dipole forbidden types; the latter 
are strongest (in f" configurations) at  intermediate wavevectors, typically k U 10 A-'. 

In the interpretation of diffraction and spectroscopic data for rare earth and ac- 
tinide materials, cross sections for isolated ions are a meaningful reference point be- 
cause 4f and 5f electron wavefunctions are relatively compact. Extensive calculations 
exist for electrons described by Russell-Saunders coupling (Balcar and Lovesey 1989, 
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Osborn el al 1991). Observed discrepancies between spectroscopic data  and calcula- 
tions prompt the question as to whether it might be more appropriate in some cases to 
describe the atomic states by jj-coupling. The jj-coupling is most likely to be realized 
in heavy atoms or in atoms which are multiply ionized. The reason for this is that the 
internal magnetic forces responsible for the one-electron spin-orbit couplings increase 
rapidly with the effective charge. Certain atoms may exhibit this type of coupling in 
excited states even though they do not in the normal level. No reliable calculations 
of the neutron cross section for electrons described by jj-coupling have been reported 
in the published literature. Work by Stassis and Deckman (1976) addresses the topic 
but their theory for inelastic events is known to be flawed (Balcar and Lovesey 1988). 

Here we report a complete theory of the neutron amplitude for scattering from 
n equivalent atomic electrons described by jj-coupling. The results for elastic and 
inelastic structure factors are presented. General features are exposed and contrasted 
witli corresponding results for Russell-Saunders coupling. The one-particle amplitudes 
we provide apply to j l  and j 2 J ,  and will also be required for the calculation of cross 
sections of states described by multi-component wavefunctions involving difFerent j -  
states, such as those for atoms with d-electrons. Explicit values are tabulated for d- 
aud f-electrons. Detailed results are given for the 12 configuration, appropriate for 
praseodymium and uranium ions. This entails calculations for equivalent and non- 
equivalent electrons, i.e. transitions within a ( j , j )  term and between states which 
belong to ( j ,  j )  and ( j ,  j') terms. 

The neutron-electron interaction is taken to be of the standard form; no relativik 
tic corrections are added as in the theory set out by Stassis and Deckman (1976). 
This stance is adopted on the grounds that with neutron-electrou spectroscopy of 
Coulomb excitations still very much in its infancy more work, using the results of the 
present study, is required to gauge the possible importance of relativistic corrections 
in the scattering theory. The present work does permit the consistent use of radial 
wavefunctions evaluated from a Dirac-Fock scheme. 

The neutron-electron interaction operator and cross sections are gathered in s e 5  
tion 2. Key expressions for reduced matrix elements of electrons in the jj-coupling 
scheme are developed in section 3 and applied to the neutron scattering amplitude in 
section 4. Sections 5 and 6 report structure factors for j" configurations for elastic 
and inelastic events, respectively. Applications of our results to f-electron systems, 
involving equivalent and non-equivaleut states, are found in sections 7 and 8. Apprc- 
priate expressions for f1 and fI3 electrons are provided in section 9. A discussion of 
our findings for scattering by electrons described by a jj-coupling scheme is given in 
section 10. 

2. Neutron-elcctrou interaction and cross sections 

The neutron-electron interaction is the sum of spin and orbital terms, which arise from 
the spin and current densities of unpaired electrons, respectively. Various derivations 
of the interaction are reviewed by Balcar and Lovesey (1989). For our present purpose 
i t  is convenient to introduce an operator 
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in which Rj ,  sj, and p j  are the position, spin and momentum (conjugate to R,) 
operators of the unpaired electron labelled by the index j = 1,2, . . . , n. In the calcu- 
lations reported here, these electrons are assumed to belong to a single atomic shell 
characterized by angular momentum 1. 

The initial and final atomic states are labelled by the composite quantum numbers 
p,p‘. The partial differential neutron cross section for a scattering event in which the 
neutron energy changes by an amount Tw = E - E’ is 

(2.2) 

Here a and 0 denote Cartesian components, r,, = -0.54 x lo-’’ cm is astandard unit 
for the scattering strength, and p,, is the (normalized) probability for the initial state. 
In (2.2), and all subsequent examples, the neutron beam is assumed to be unpolarized, 
and we choose for the sake of brevity of notation to omit the explicit E-dependence of 
Q. 

Bragg scattering is strictly elastic. The appropriate cross section is expressed in 
terms of the average scattering operator 

For a perfect crystal (Q) vanishes unless the neutron scattering vector k coincides with 
a reciprocal lattice vector, i.e. diffraction is observed when Bragg’s law is satisfied. 
From (2.2) the diffraction cross section is readily found to be 

In a simple collinear magnetic structure just one component of (Q) is finite, in which 
case the Bragg cross section vanishes when k is parallel to the preferred axis. 

Another form of elastic scattering which is often of interest is that from a perfect 
paramagnet, realized to a good approximation at temperatures much in excess of 
the strength of coupling between magnetic ions. For many cases of interest (Q$Qp) 
vanishes unless a = 0, and ( l Q , I 2 )  is independent of the Cartesian index, so (2.2) 
reduces to 

du 2 - = -r~([QI’). 
dQ 3 

In the limit of small scattering vectors it is well known that Q is proportional to the 
atomic moment. If the electron state is described by a total angular momentum J ,  
we have 

Q - (9/2)J k-0 (2.6) 

where g is the Land6 factor. Using this limiting expression in (2.5), together with the 
result J - J  = J ( J + I ) ,  leads to the familiar cross section for the total scattering from 
an isolated paramagnetic ion, 

do - = (gr0/2)’$J(J + I )  dQ (2.7) k -* 0. 
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The rcsult (2.7) is valid for both Russell-Saunders and jj-coupling schemes but the 
Land& factors take different values, in the general case. For Russell-Saunders coupling 
g is expressed in terms of the total spin and orbital quantum numbers, S and L ,  
whereas in  jj-coupling 
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As an example, consider the ground state of praseodymium: ft; J = 4, L = 5 ,  S = 1 
leads to g = 2. In jj-coupling j = $ or in  the first and second half of the f-electron 
series, respectively, and the corresponding Land6 factors are g = $ and 5 

7.' As a final topic iu tliis section we consider the cross section for inelastic scattering 
in which an atom is excited to a state at  an energy A above the ground state. From 
(2.2) 

in which the structure factor is 

G(J,J ' ;h)  = C(60p - ~ , ~ p / ~ z 2 ) ~ ~ P ( ~ I Q ~ I ~ O ( ~ ~ ' I Q ~ l ~ ) ~  (2.10) 
aR PI" 

Very often a single crystal is not available. In this instance G is averaged over all 
directions of h. The average total cross section for a particular transition is obtained 
from (2.9) using 

in which the quantum numbers p ,  p' label the, possibly degenerate, states separated 
by an energy A. 

In the follow~ing section we develop for electrons described by jj-coupling the 
matrixelemrnt (pIQIp') whicli occurs in the elastic and inelastic neutron cross sections 
we have reviewed. 

3. Rcdiiecd matrix clemcuts 

We employ techuiques pioneered by Racah which are today standard practice in atomic 
and nuclear spectroscopy; useful accounts are given by de-Shalit and Talmi (1963) and 
Judd (1N3). Racah algebra is couched in terms of irreducible tensor operators. Hence, 
the first step is to express the interaction operator Q in terms of an appropriate tensor 
operator. Let us denote this operator by X&' where the positive integer K' is the 
rank of the tensor and -I<' < Q' < :<'. Explicit expressions for X are given in later 
sections. The matrix element of ,Y$ has a structure dictated by the Wigner-Eckart 
theorem, namely 

(JMIX&'[J'M') = (-l)'-M ( Ii' " ) ( J I I x ~ ' I I J ' )  (3.1) -M Q' M' 
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where the right-hand side is, apart from a phase factor, the product of a 3j-symbol 
and a reduced matrix element. We use the phase conventions employed by Edmonds 
(1974) and also adopt his notation for the most part. 

Attention is now shifted to the calculation of I.he reduced matrix element of X. For 
a configuration of n equivalent electrons, each with angular momentum i, fractional 
parentage coefficients are used to construct antisymmetric states. If X(ct) denotes a 
one-electron opceator , so that 

x = LX(o) (3.2) 

then the reduced matrix element which occurs in equation (3. I) is 

(3.3) 

Here the first factor 011 the right-hand side is llll' reduced matrix clement of X with 
respect to a singl--electeon state and the explicit expression is provided in the lat-ter 
parts of this section. The reduced matrix element of V{K' I contains a sum of fractional 
parentage cocfficjr-nts. Before giving the formula for the lat.ter quantity note in (3.3) 
that v denotes the seniority quantum number, and the convenient notation 

If{, Kt, ...] = (2H + 1)(2I\' + 1)... 

which is borrowed from Judd (1963). 
In the dcfiuit.ion of a fractional parentage coefficient (LiJ {Ivl) it is understood that 

vJ defines a parent state state of j"-l whereas 1/) is a slate of j". These coefficients 
were tabulated by Bayman aud Lanae (HJ66) together with the decompositions of the 
configuratiou of j" in terms of the states of the total angular momentum J. \Vith the 
standard definition of a Gj-symbol it c.an Le shown that 

("JIIY,K"llv'J') ~ nlJ, 1(', .1']'/' L("J {I"])('/.I'{Ii'l) 
~f 

X (_l/+HJ+K' 
{'

'j 'J~f. 1,.'}. (34) 

\\ie now list three special ceases for this reduced matrix element: some additional 
cases are covered by the results gathered in table From the orthogonality relation 
for fractional parentage coefficients one obtains 

(3.5) 

The result 

( JIIV(\)II 'J') = ;3(JIIJIIJ) 6 ' (36)v v UIlj'IUl JJ'VI/I/' 

follows from (3.3) when X is taken to be the total angular momentum operator, in 
which case X = i. The last special case of immediate interest is that for n = 2, In 
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Tabl", 1. Reduced matrix elements of V(K') defined in (3.4) for rare eaeeh ions with 
j = ~ a.nd i. The sqUa.r<l<l "a!ues are given in prime !actored form, where the asterisk 
indicates a negative value. An underlined digit represent" a negative exponent for the 
corresponding prime: for example the entry ",3l21i" the number _{'23 X 52/3 X 7}1!2. 

CeJ+ /S",3+ n = 1 
,,= I J=~ J' = ~ 
\dIW(lJII"J') 01 
(vJnV(3) lid') oooi 
(vJll\'(~lHvJ') 0000,1 

p.-s+ /P1ll3+ n = '2 
,,= '1 ,1=4 ,1' =4 J' = '2 
(vJIW(l )\lvJ') 3201 
(vJII V(3) 11")') "'1°01, I 0121 
l"JIIV(~)lIvJ') "'0001,11 "'1111,1 

Nd' + .. =1 
,,= 3 ,1=~ ,1' - :<- , J' = i 
("JIW(l) IIv.1') 0201. 1 
(vJlly(·J)II",1') "'0101,11 *3121 
(vJIW( ~)I\l'J') 01 11,11 "'2111, 1 

CdH /Yb3+ n '" 1 
v·= I J=j ,1' - L- , 
(,,)IIV( 1 )1\vJ') 01 
(vJII V(3)lld') 0001 
(vJIIV(~)llvJ') 0000,1 
(""11 \t'(1) IlvY) 011 

'n.,~+ ITm~t n=2 
v = '2 J=6 ,1' =., J' = '2 ,1' =4 
(,,)IWf I lllvJ') 0000,01 
(l'JII"'(3)n"J') 1101,11 1002,.2.1 
(vJIIV(~ )lIvJ') ·5100,101 alii 0011,1 
(,.JI.IV(7)lIvJ') "'OO10,lQll *101 '"2210,.2.01 

Oy3t jET"+ n=3 
,,= 3 J = If- J'_ll- , J'  11- , ,1'  !!.- , ,1'  !!.- , ,1' = i 
(vJI,W( I )lIv,1') 1011,001 
(vJliV{J)lIv,1') -ron.rm 8001,.2.01 "'7111,11. 
(vJIIV(5)1I"J') 1001,1111 '"4011,1111 -n a.Ut *10ll,;n(47)2 
(vJIIVP)lIvJ') 1010,.1111,1 ZlIO,li11 *3511,111 t 3100,;nt '"2001,001 

HoSt " == 4 
v = 4 J =8 J' =8 J' = s J' "" 4 J' =:2 
("JIIV( 1)l!vJ') 2101,001 
(vJ\\ .'(3)llvJ') '"1001,101 I '"2Il!,101 
("J liV(") 11 "J') 2001,11 11 0101,0111 "2201,°11 
("JIIV(1)llvJ') '"0110,1l11,1 aioo.jjn 1201.02.11 *2111,101 

this instance there is only one parent state j =: j, and the reduced matrix element of 
V(K'j vanishes unless J and J' are even integers; n = 2, 

K' 
j 

(3.7) 
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This result is used in section 8 in the discussion of elastic and inelastic structure factors 
for P. 

Having summarized the apparatus for calculating the reduced matrix elements 
of a sum of oneelectron operators for n equivalent electrons we proceed to apply it 
to the interaction operator defined in (2.1). From the presentational view-point it 
is convenient to split the work in two parts. First we present the reduced matrix 
elements of x for the spin and orbital terms in the neutron-electron interaction and 
then, in the next section, we assemble the results to form the complete matrix element 
of Q for the configuration j" .  The one-electron reduced matrix elements presented in 
sections 3.1 and 3.2 can be used for problems that involve non-equivalent electrons, as 
demonstrated in section 8. Wavefunctions for ions in the palladium and platinum (d") 
groups of compounds usually contain several components, because the crystal field is 
influential. The cross sections for models of such systems can be calculated with the 
expressions reported in this and the following section. 

3.1. Spin interaction 

Using the standard expansion of a plane wave in terms of spherical harmonics and 
spherical Bessel functions 

where the second equality defines x for the spin interaction, namely 

in which (1qKQIK'Q') is a Clebsch-Gordan coefficient (related to a 3j-symbol, Ed- 
monds 1974), q = 0, & I  labels a spherical component of the electron spin, and k and k 
are unit vectors. From the definition (3.9) and use of standard formulae, the reduced 
matrix element is readily shown to he proportional to a 9j-symbol, 

(3.10) 

In the case of n equivalent electrons j = j'. The more general expression (3.10) is 
required for non-equivaleut electrons, discussed later in the paper, and the special case 
of one electron (hole). 

3.2. Orbilal interaction 

The appropriate expression for the oneelectron operator is 

XQt K' - - (4?r)'/'zY$(R)jK(kR)(k x V)g(KQlqlK'Q'). (3.11) 
PQ 
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This operator is independent of the spin so its reduced matrix element is of the form 

E Balcar and S W Louesey 

At this juncture it is perhaps worthwhile to remind the reader that the formula for the 
reduced matrix element of an operator acting on two systems (e.g. spin and spatial) 
is arbitrary to within a phase factor. The latter depends on the chosen ordering of 
the individual operators, and the angular momentum coupling scheme. Thio phase 
factor must he Consistent in (3.10) and (3.12). In our notation, the angular momentum 
coupling scheme is defined through a Clebsch-Gordan coeEcicnt (sm,lm,ljm), and 
the operators are written as in (3.10), namely spin to the left of orbital (spatial). The 
phase factor in (3.12) is consistent with this ordering, and use of a unit tensor for the 
spin component in (3.10). 

The calculation of the reduced matrix element on the right-hand side of (3.12) 
is tedious; several approaches are discussed by Balcar and Lovesey (1989). We will 
simply lift the expression from this work, being careful to use exactly the same notation 
to facilitate the task for the reader who wishes to trace through the various steps. The 
result of interest is 

(21If’IJI) = lr~[1)2(-1)(’+”+”’)/a[l\’, K y  

(3.14) 

where fj(r) is the radial part of the one-electron wavefunction. The quantity 
A(Ii”, K’,l) is defined by Balcar and Lovesey (1989). For now it is sufficient to note 
that A’‘ is an odd integer, and the values of A(IC‘, IC’, I) required later arc 

A ( l , l , I ) =  { 6 E  :;3 Y’l 

and for I = 3, 

A ( 3 , 3 , 3 ) = - - &  1 A ( 5 , 5 , 3 ) = f i { ~ )  1 10 1’2 . 
7 2  

(3.15) 

(3.16) 

The results (3.10), (3.12) and (3.13) could be obtained from equations (11.71) and 
(11.54) in Lovesey (1987), evaluated for a single electron. 

The expressions (3.10), (3.12) and (3.13) together with (3.3) allow us to derive an 
explicit expression for the matrix element of Q in the configuration j ” .  This topic 
is taken up in the next section. Results for non-equivalent electrons are presented in 
section 8.3. 
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4. ($vJMIQqJjnv'J'M') 

A compact way in which to present the matrix element of Qs in the configuration jn 
is to define a tensor operator 25' on the lines of (3.8) and (3.11), and such that 

The matrix element of Q, is therefore expressed in terms of a sum of the matrix 
elements of Z, and the latter satisfy the Wigner-Eckart theorem (3.1). The reduced 
matrix element of Z has a structure which is given by (3.3) in which the reduced 
matrix element of ,y is, apart from some coefficients, the sum of (3.10) and (3.12) 
evaluated for j = j'. 

Gathering the various expressions we find 

( ~ ~ " J I I Z ~ ' ( I C ) ~ ~ ~ ~ ~ ' J ' )  = (jnvJIIV(K')Iljny'J') 

where IC = IC' 1 and IC' = 1 ,3 , .  . , , 2 j .  The origin of the restrictions on K ,  If' are 
easily seen for the spin component E ( K ,  IC'). Turning to (3.10), the reduced matrix 
element of the spherical harmonic Y K  vanishes unless If is even, and the 9j-symbol, 
for j = j ' ,  vanishes unless 1 + Ii + IC' is even, and 1, If, If' satisfy the triangle 
condition. With regard to the orbital component F(IC, IC'), the 3j-symbol in (3.13) 
vanishes unless 1 + IL' + IC' is even and 1, K ,  IC' satisfy the triangle condition. The 
condition IL" odd is contained in the definition of A(K',  K', l ) .  

The reduced matrix element of V ( K  ) for I<' odd possesses some remarkable prop- 
erties which are summarized in the identity, 

This immediately reveals that the reduced matrix element is diagonal with respect to 
the seniority number and independent of the number of electrons n. Furthermore, it 
has the same sign and magnitude for the complementary states j" and jzj+l-", which 
have common quantum labels including seniority number. 

Using the results of the previous section, 

IC'+ 1 112 
E(K' + 1, If') = (1') /3(K')E(IC' - 1, K') 

in which 

2 j  i 2 + If' 

1 j = I + ,  
@(IC') = 

2 j  + 1 i I<' 

and 
112 

JqK'+l,If ' )  = (If:; - 1) F(If' - 1, K ' ) .  

(4.4) 
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In view of these relations, (4.2) is completely determined by E(K'-  1, K')  and F(K'- 
1, K'), which are quite simple expressions, namely, 

E Balcar and S W Louesey 

1 
2 

E(1i' - 1, K')  = -(K' + 1) 

j = l - i  1 
j = l + ,  1 (4.7) 

F(K' - 1,K') = (21+ l)(I<'+ l)1/zA(~C',~i' , l)(-l)(K'-1)/2 

x {  [(2j + 1 + 1i')(2j - I<')]"' 
[(2j + 2 + K')(2j + 1 - K')] ' lz j = I - 

j = l + a  (4.8) 

where values for A(K',  K ' , l )  appear in (5.15) and (3.16). In both these expressions 
the maximum I<' = 2j. Values of E ( K ,  Ii') and F ( K ,  K' )  required for the description 
of scattering by electrons in a configuration I" are listed in table 2. 

Table 2. The quantities E ( K ,  A.') and F ( K ,  K')  defined in (4.7) and (4.8) for rare 
earth ions wi th  j = $ and j = $. See table 1 lor details. 

*IO11 E(0,I) 3101 
6OU E(2,I) *4101 
%U E(2,3) 5002,l 
6012 E14.3) *7102.1 

Ff0.l) 3301 

The results reported in this section so far amount to a complete prescription for 
the matrix element of the neutron-electron interaction (2.1) for the configuration jn. 
The remainder of the section is taken up with discussion of some particular features 
of the main result. 

Let us compare the reduced matrix element of Z with the corresponding exprea- 
sions for Russell-Saunders coupling. Referring to our previous work on this subject 
(Lovesey 1987, Balcar and Lovesey 1989) the analogue of (4.2) may be written in the 
form 

Bere the spin reduced matrix element 

C(K, IC') m (SLJIIW(1,K)K'IIS'L'JI) 
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s 
and the orbital reduced matrix element 

where W("'b))c is the standard unit tensor operator; following the convention described 
in section 3, the indices a, b refer to the spin and orbital systems, respectively. For 
the extreme case of one electron the jj-coupling and Russell-Saunders schemes are 
identical given the identification of quantum labels S = S' = i, L = L' = I ,  and 
J = j, J' = j'. Hence, in this instance the one-electron reduced matrix elements 
E ( K ,  I<') and F ( K ,  I<') in (4.2) can be matched with C(IC, K') and A ( K ,  K'); this 
topic is taken up again in section 9. 

On approaching the forward direction of scattering k + 0 the only significant 
radial integral (3.14) in the matrix element of Qq is (&), and this ultimately achieves 
the value unity while (jK) for I< # 0 vanish. By examining (4.2) in this limit we 
conclude that the matrixelement fork -+ 0 is proportional to ( u J ~ ~ V ( ~ ) ~ \ U J ' ) ,  and the 
result (3.6) shows that only the diagonal element is finite. Hence, for a configuration 
j" ( V I  2 2), inelastic events do not contribute to the scattering in the forward direction. 
This result contrasts with the situation for Russell-Saunders coupling, where elastic 
and dipople allowed (J -+ J Z!Z 1) events contribute in the limit k -+ 0. For n = 1 the 
calculations are based on the one-electron matrix elements provided in section 3. 

The quantities E(0,l) and F ( 0 , l )  together with the reduced matrix element of 
V ( ' )  determine the value of the forward scattering amplitude. A straightforward 
calculation based on (4.7) and (4.8) reveals that 

and 

These two results are required to verify that the scattering in the forward direction is 
proportional to the square of the magnetic moment. 

In many applications the cross section of interest is the total value for states J, J' 
averaged over all directions of the scattering vector k. The latter operation is certainly 
appropriate when a polycrystalline sample is used in an experiment, and summing over 
M, M' is a good approximation when the energy resolution available does not allow 
the fine structure of the states J ,  M and J ' ,  M' to be resolved. It can be shown that 
the quantity denoted by B in (2.11) is 

x (U'J'M'IQ,IUJM) * (U'J'M'IQp ( U J M )  

(4.10) 
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where K' = 1 ,3 , .  . . , 2 j .  The factor (1/(2J+ 1)) accounts for the degeneracy 'of the 
iriitial state, i.e. it is the value of p in the general formula (2.2). 

The relative simplicity of (4.10y indicates that  the expression for Q can be sim- 
plified to some extent. To this end note that the component of Q parallel to the 
wavevector k does not contribute to the cross section. Hence, any function propor- 
tional to IC can be added to Q without changing the cross section. This non-uniqueness 
of Q can be exploited to remove the term K = I<' + 1, say. Making use of (4.4) and 
(4.6) we obtain an alternative expression 

E Balcar and S W Lovesey 

The similarity of structure in expressions (4.10) and (4.11) should be noted. In both 
cases there are no terms with v # U' because the reduced matrix element of V(K') for 
IC' odd is diagonal in the seniority number. 

For dR configurations crystal field effects, in general, lead to multi-component 
wavefunctions. In consequence, the scattering amplitude contains several terms, each 
of which is evaluated with (4.11). On the other hand, for P configurations an isolated 
ion is frequently a quite realistic model. Not surprisingly, perhaps, calculations in this 
instance can Le pushed much further along, in fact to the extent of obtaining compact 
expressions for t.he elastic and inelastic structure factors. 

5.  Elastic scat ter ing:  j" 

The structure factor for scattering from an isolated paramagnetic ion is given by (4.10) 
evaluated for J = J' .  It  is usual to cast the elastic structure factor in terms of an 
atomic form factor F(k) defined by 

c ; ( J , J ; ~ ) = B ( J , J ; O ) ~ * ( k )  (5.1) 

in which 

G ( J , J ; O ) = $ g 2 J ( J t 1 )  

follows from (2.8) and (4.9), cE (2.7). The result (5.1) is exact whereas by using (4.11) 
it follows that (2.5) is correct for terms involving (&), i.e. at small wavevectors. 

Experience with atoms which are well described by the Russell-Saunders scheme 
has shown that the -called dipole approximation to the form factor furnishes a toler- 
able description of data. Referring to (4.10), this approximation would be obtained 
by neglecting terms beyond IC' = 1 and the term proportional to p(1), However, 
contrary to the Russell-Saunders case, the factor p(1) is not small; for j = $ and 3 the values of 8(1) are (-2) and (-$), respectively. In view of this, the following 
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approximation for F(k)  is obtained from (5.1) using the first contribution in (4.10) 
including the term in p(1). A straightforward calculation brings us to the result 

The coefficient of ( jz )  is i($) for j = :($), and so this term appears to be most 
significant in the first half of the f-electron series. However, radial integrals depend 
on j so the j-dependence of the form factor is not a simple issue. 

In an ordered magnetic material the ions are described by the state M = J to 
a good approximation, i.e. the ions are close to magnetic saturation. Setting M = 
M‘= J’= Jin(4.11) ,  

= ( 4 . ) ” 2 x H ( I I ’ ) Y p ( i )  = L(L)  
K’ 

(5.3) 

where the second and third equalities define H(I<’)  and L ( L )  which are convenient 
in subsequent work. Using spherical coordinates e,+ for the unit vector L, and intro- 
ducing the quantity 

the matrix elements of Q, and Qv are readily shown to he M(8) cos 4 und M(B) sin 4, 
respectively. Hence, 

(5.5) 
2 = {siiisL(e) -cosoM(e)}Z -.+ { i g J s i n s }  for k -+ 0 

where in the last line g is the Land& factor (2.8). The atomic form factor for a saturated 
ion, normalized to unity a t  k = 0 is 

F(L) = ( 2 / g J ) { L ( B )  - M(8)cot 8) (5.6) 

whicli is independent of the angle 6, i.e. the form factor has cylindrical symmetry. 
By making use of the identity 

{sinBL(B) -cosOM(B)] 
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the average of the structure factor (5.5) with respect to the directions of k, cf (2.11) 
and (4.10), is seen to be 
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} HZ(1i‘) = $ {SJF(k)}* g { li‘(2If’ + 1) 
(K’ + 1)(21<‘ - 1) 

Here F ( k )  is the form factor for the averaged structure factor o fa  saturated ion. This 
is not the same as the paramagnetic form factor defined in (5.1); a little algebra shows 
that G(J, J ;  k) derived from (4.10) can be written 

} [H(K’)/(K‘OJJIJJ)]’ (5.9) (IC’ + 1)(2rc - 1) 
O(J,J;t)=C( K’ X’(21C’ + 1) 

which compared with (5.8) makes explicit the difference between paramagnetic and 
saturated ion form factors. However, they are exactly the same if terms beyond 
I<‘ = 1 are neglected in (5.8) and (5.9), i.e. the dipole approximation (5.2) applies to 
paramagnetic and saturated magnetic ions. 

If a single crystal (domain) is studied then (5.5) is the correct basis for interpreta- 
tion in terms of scattering from an isolated saturated magnetic ion. In one standard 
scattering geometry, the preferred axis is perpendicular to the plane defined by the 
incident and scattered neutron wavevcctors, in which case 6 = 7r/2 and the term M 
in (5.5), that arises from the I and y components of the interaction, is not observed. 

The identity (5.7) provides a convenient route for the calculation of F(k) ,  partic- 
ularly when it is written in terms of Legendre polynomials, 

H ( 1 )  + ~ ( 5 2 ’  4 - 1)N(3) + -(21z4 9 - 14x2 + 1)H(5) 
8 

(5.10) 

Here, I = cos6 and the last expression is correct for j = 5 .  For j > 5, it should be 
borne in mind that, although additional terms are added to the expression (5.10), the 
latter contains all contributions in the radial integrals (j, ,),  (j2) and {j4), and hence it 
is likely to be more than adequate for most purposes. 

6. Inelastic scattering: j”  

The cross section for a scattering event in which an isolated ion is promoted from a 
state J M  to J’M‘, at an energy A above the initial state, is calculated from (2.9) 
using (4.2) or (4.11). If the fine structure in the initial and final states, due to the 
total or partial lifting of the degeneracies in M or M’, is on an energy scale which 
is very small compared with A then it might be appropriate to average over M and 
sum over M’. Referring to expression (2.10) for the inelastic structure factors p = M ,  
p’ = M’ and p, = 1/(2J + 1). In the event that the sample is a polycrystal and the 
structure factor is averaged over the directions of the scattering vector k, as in (2.11), 
which leads to the result (4.10), for G(J ,  J ‘ ; k ) .  
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Several features of B ( J ,  J'; k) merit comment. The quantities E and F depend 
on I and j, and not on the nature of the initial or final states. They are a set of 
numbers for electrons in the first ( j  = 1 - i) and second ( j  = 1 + 4) part of the 
electron series. The properties of the initial and final states are solely contained in 
the reduced matrix element of V ( K ' )  which, since K' is odd, satisfies the identity 
(4.3). Classification of the states n 2 3, and the coefficients of fractional parentage, 
have been tabulated by Bayman and Lande (1966). We have already noted that 
there are no dipole allowed transitions, since V(')  is diagonal with respect to the total 
angular momentum or transitions between states with different seniority numbers. 
The reduced matrix element of ) for n = 2 is given by (3.7). Application of our 
results to the case 1 = 3, reported in the following section, illustrates several features 
of the jj-coupling scheme and of the properties of V(K') .  

Because V ( I )  is diagonal with respect to the total angular momentum the leading 
term in equation (4.10) for B ( J ,  J ';  k) is I<' = 3 when J # J'. The lowest order radial 
integral is therefore ( j ? )  and B vanishes in the limit k - 0. For n = 1 the cross section 
is obtained from the one-electron matrix elements provided in sections 3.1 and 3.2. 

The j" configuration in which j = i is encountered in the description of d- 
electrons. The configuration n = 4 is a closed shell for which there is only one state, 
J = 0. For n = 2 the two states J = 0,2 have different seniority quantum numbers. 
Hence, there are no inelastic events with the j"-configurations in which j = and 
n = 2,4.  The oneparticle cross sections are discussed in section 9. 

7. Applications for I = 3 

The f-electron series is discussed both to illustrate how some of the results work out 
in practice, and to make contact with available experimental spectroscopic data. To 
this end, table 3 contains a summary of the properties of the jj-coupling scheme 
for I = 3, illustrated for isolated tripositive rare earth ions. Ground states have a 
maximum J for j", which is n{j - (n - 1)/2}, with j = for f 1 4 ,  and j = $ for 
f''-fI3. Complementary states, j "  and jZjt1-", have identical properties, e.g. f 2  and 
f' (f* and f") are complementary states with j = 4 (5). There is one closed shell 
configuration, namely f6,  which contains one state with J = 0. The seniority of the 
ground state is listed, together with the values of the total angular momentum (J') of 
states in j"  with the same v because these are accessible from the ground state. For 
example, j2 contains J = 0 , 2 , 4  in which J = 0 has v = 0 while J = 2 and 4 have 
v = 2. Since @') is diagonal with respect to v the state J' = 0 is not accessible 
from the ground state J = 4.  This result is bome out by the explicit result for the 
reduced matrix element of V(" for n = 2 given in (3.7); with J' = 0 the 6j-symbol 
vanishes unless J = IC', but J and I<' are required to be even and odd, respectively. 

By examining table 3, the equivalent electron configurations j" of immediate in- 
terest have n = 2 , 3 , 4 ,  and 6. For all but the closed shell, n = v so the identity (4.3) 
does not bring any saving in labour. The values of (vJIIV(K')llvJ') required for l = 3 
are provided in table 1. 

8. Results for fZ 

Here we report results for the elastic and inelastic neutron cross sections for p, and 
compare them with corresponding results in the Russell-Saunders scheme. Within 
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Table 3. Totd angular momentum and seniority quantum numbers for ground and 
erdted states of tripositive rue earth ions. The ground and listed excited states for 
n 2 2 have the same seniority quantum numbers, in vier of the fact that V(* ' )  for 
K' odd is diagonal with respect Lo Y .  

Ground state Seniority Excited states 

j = $  
ce3+ fl J =  $ n = 1 J' = $ 

~ m 3 +  rS J = 4 n = ~  (3' = 4 )  

Cd3+ f' J = f  n = l  (3' = 2 )  
Dy3+ e J = y  n = 3  u = 3  J - 2 ~ 2 ~ 1 ~  2 
Ho3+ fIa J = 8  n = 4  Y = 4  J' =2,4,5 
Er3+ I" J = Y  n = 3  u = 3  2 ' 1 ' 2 ' 2  
Tin3+ fl2 J =  6 n = 2  Y = 2 J' = 2,4 

P?+ P J = 4  n = 2  u = 2  J' = 2 
Nd3+ p n = 3  v = 3  J ' = $  
Put3+ I' J = 4  n = 2  v = 2  J ' = 2  

Ed+ F' J = O  n = 6  

, I  J = :  

Tb3+ F' J = 6  n = 2  v = 2  J' = 2,4 
, - a  s 9 U 

J ' = E  s 2 U 

Yb3+ f I 3  J = $  n = l  J' = % 

the jj-coupling scheme the results for jz apply also to j z j - ' .  The final topic in the 
section is scattering from a state of two non-equivalent electrons ( j ' j )  with j' # j to 
a state of two equivalent electrons j z .  We may note here that the amplitude for the 
event jz + f 2 ,  j # j', IS ' zero. 

S.1. Forni factors 

Tile paramagnetic and saturated ion form factors for elastic scattering are conveniently 
expressed in terms of the quantities H ( K ' )  defined in (5.3). Armed with these quan- 
tities the paramagnetic and saturated ion form factors follow from (5.1) and (5.9) and 
from (5.8)) respectively. 

For j = $, n = 2, J = J' = 4 we obtain the following results from (3.7), (3.15), 
(3.16), (4.7) and (4.8) or, alternatively, table 1 

and 

Using these in (5.1) and (5.9), together with the Land6 factor g = f ,  the paramagnetic 
form factor F(k) is obtained from 
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and it is displayed in figure 1. The corresponding quantity for a saturated ion is 
obtained from the appropriate structure factor averaged over the directions of k and 
the result is given in (5.8). A comparisonof expressions (5.8) and (5.9) leads us to the 
conclusion that the two form factors in question are built from the same combinations 
of (jK) which appear in H ( K ' ) ,  and that only the coefficients differ. In the present 
case, the spatial average of the saturated ion structure factor leads to a form factor 
obtained from (8.2) by replacing the coefticients of the second and third terms by 
1/1400 and 5/47916, respectively. 

Paramagnetic ion 

Paramagnetic ion 

Salurated ion 

0 4 8 12 16 20 

Figure 1. Paramagnetic and saturated ion form factors for P calculated from (5.9) 
and (5.8), respectively, are displayed together r i t l i  the corresponding paramagnetic 
form factor calculated w i t h  the Russell-Saunders scheme (Balmand Lovesey 1989). 
Iu the absence of Dirac-Fodt calculations for P$+ the figures are generated with 
radial integrals appropriate for U3+. We anticipate that this choice of ( j , )  is likely 
to affect amplitude values at large WavYevectoE (3 IZA-') if at all. 

Referring to  figure 1, there is a significant difference in the numerical values of the 
two form factors at intermediate wavevectors. This is due largely to the fact that the 
coefficients of the second terms, which involve ((jz) + 9(j4))', differ by a factor 3.14. 
The paramagnetic form factor calculated according to the Russell-Saunders scheme is 
also included in figure 1, and we conclude that for P there is a minimal difference in 
the elastic scattering cross sections for the two coupling schemes. A larger difference 
is revealed in the inelastic C ~ O S S  sections, as will be seen in the following sub-section. 

8.2. Inelastic structure factor jz 
Just as in the preceding example of elastic scattering, the main building blocks for the 
scattering amplitude are the reduced matrix elements ( V J I / V ( ~ ' ) ~ ~ V ' J ' )  and E(K' - 
1, I<') and F ( K '  - 1, I<'). Values for these quantities for n = 2, j = $, J = 4, J' = 2 
can be obtained from (3.7), (4.7) and (4.8) or directly from tables 1 and 2. 

Here we give the analytic expression for the total intensity for the transition J = 4, 
J' = 2 averaged over all directions of the wavevector. The appropriate quantity is 
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provided in (4.10), and in the present case we find 
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Notice that the radial integrals appear in (8.3) and the elastic form factors in precisely 
the same combinations, i.e. the elastic and inelastic structure factors are linear com- 
binations of the square of the quantities H(1C’) defined in (5.3). By comparing the 
appropriate formulae, it is seen that the weight of H2(K’)  in a particular expression 
is largely determined by the reduced matrix element ( V J / I V ( ~ ’ ) Y J ’ ) .  

With regard to (8.3), there is no term in H(1) because (vJllV K’)llu’J’) is diagonal 
with respect to the total angular momentum, cf (3.6). This result is a general feature 
of inelastic transitions within a term described by j”. Put in slightly different words, n 
equivalent atomic electrons described by the jj-coupling scheme do not possess dipole 
allowed transitions. The latter occur in the LS-scheme, and in jj-coupling they are 
found in non-equivalent electron configurations, as we illustrate in the next example. 

I f’ 

Jy 0 4 . 8 12 16 
D 

Figure 2. Inelastic struclure factors calculated from (4.10) are shown for f 
( J  = 4.5’ = 2) and P ( J  = ;,.I’ = $) together with the corresponding result 
for f evaluated with the Russell-sunders scheme (Balcar and Lovesey 1989). Note 
comments in livut 1. 

The result (8.3) is displayed in figure 2 together with the corresponding quantity 
for LS-coupling. For this case (j = i, J = 4, J’ = 2) a significant difference is found 
between the intensities evaluated by the two coupling schemes. The experimental 
resolution available today in scattering experiments is adequate to detect differences 
on the scale seen in figure 2. 

As the final topic in this sub-section we compare results for P and p. This exam- 
ple is of interest in the interpretation of data for uranium compounds because there 
is often uncertainty as to the appropriate ionicity, indeed whether an integer value 
is appropriate. In view of this interest, we have included in figure 2 the intensity 
associated with the transition j = 5 ,  J = :, J’ = 5. To understand the difference 
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between the results for P and we note the following. From the definition (4.10) of 
the total average intensity and the results for ( v J I [ V ( ~ ' ) ~ ~ V ' J ' )  for j2 and j" provided 
in table 1 it is a simple matter to show that the intensity formulafor js, J = $, J' = $ 
is obtained from (8.3) by multiplying it by (4/5). Hence, the difference in the inten- 
sities for j 2  and j 3  apparent in figure 2 arise from two sources: (i) a simple reduction 
for j3 with respect to j2 of 20% which arises from differences in the coe5cients in 
G(J ,  J'; k); and (ii) differences in the behaviour of the radial integrals for the atomic 
configurations j2 and j 3 .  

8.3. Non-epivalenf electrons 

To complete our discussion of scattering by an atom with two electrons described in 
jj-coupling we present the amplitude and cross section for the event (j'j) - jz with 
j # j'. Let the two states have total angular momentum J' and J ,  respectively. A 
straightforward calculation reveals that the analogue of (3.3) is 

(J'IIX~'IIJ) = (j'IIxK'IIj)R(J<') (8.4) 
where 

The allowed J are restricted to the values 0,2, .  . . , (2j  - 1) because it is an antisym- 
metric state, whereas J' merely satisfies the triangle condition lj - j'l < J' 5 ( j  + j') 
expressed in the Gj-symbol. Note that R(K') plays a role similar to V ( K  ) in the 
reduced matrix element for the configuration j*, and there is a close resemblance 
between R(If') and V'(lc') for n = 2, given in equation (3.7). The phase factor in 
R(K') reflects the ordering of the two one-electron states in the state J' contructed 
from (j'j), i.e. there is a different phase for the state constructed from (jj'); cf the 
discussion in section 3.2. 

The inelastic structure factor averaged over all directions of ;E, defined in (2.11), 
is found to have the form 

G ( J ' , J ; k )  = 3 {R(K' ) [A(K' -  I , K ' ) + B ( K ' -  l,K')]}'/(K'+l) 
K'=l 

+ 3 { R ( K ) B ( K , K ) I ~  / ( 2 ~  + I). (8.5) 
K=2 

Here, the quantities A ( K , K ' )  and B ( K ,  K') are proportional to the orbital and spin 
components of the one-electron reduced matrix element (j'llxx'Ilj) occurring in (8.4). 
The values of A(I< ,K' )  and B(K,  K') for 1 = 2 (j' = z ,  j = f )  and 1 = 3 (j' = $, j = 
5 )  ar(: provided in table 4. For 1 = 3 (j' = i, j = :), the values of A(K' - 1, K') and 
B(K' - 1, I<') are obtained from the corresponding entries in table 4 by multiplying 
them by ( - d / 2 ) ,  whereas the value of E ( K ,  K) is (&2) times the corresponding 
entry. Returning to formula (8.5), let us note that the dependence of G(J ' ,  J ;  k) on 
the quantum numbers J ' ,  J is in R(K'). For given values of J', J the structure factor 
for j' = $, j = 5 is the same as that for j' = 5, j = $, evaluated with the aid of entries 
in table 4, apart from an overall multiplicative factor (3/4) which is just the ratio of 
the gyromagnetic ratios for the states j = 5 and :, namely (G/7) and (8/7). When 
1 = 2, the structure factor for j' = f ,  j = is obtained from (8.5) using the entries in 
table 4 and multiplying the result by (2/3), the ratio of the gyromagnetic factors for 
j' = 3 and j = 

7 

2 2 '  
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Table 2. The ontelectmn orbital and spin-reduced matrix elements A(K,h") 
and B(IC,K') which occur in the structure factor (8.5) for non-equivalent clec. 
trans. The entries in the table are to be combined with the appropriate (jKt*.) 
as indicated bv the indices for Afh" - 1.K'). 5 I K ' -  1 .K ' ) .  and with (iwI far 

9. One-particle cross scctions 

We have chosen to write formulae (8.4) and (8.5) in such a convenient way as to cover 
the special cases d' ,d9 and f',fI3 as well, i.e. a single electron and a single hole. The 
structure factors for these two cases are obtained from (8.5) by setting ,%(I<') = 1, 
and using the values of A ( K , K ' )  and E(K, K') provided in table 4; in this instance 
J' = j' and J = j with j = I f f. The inelastic structure factors for 4 -+ and - $ (I = 3) are in the ratio (6/7):(8/7), as explained in section 8.3. The results 
for $ -+ 5 are also included in the table since they might be required for one-particle 
I = 2 events. In the case of elastic scattcring ( j  = j ' )  the diagonal spin reduced matrix 
element ( I <  = I<') is zero, and the structure factors defined in (4.10) and (8.5) have 
identical structures, as expected. 

10. Discussion 

Our comparative study of neutron scattering by electrons described by SL and j j -  
coupling schemes has revealed a number of significant differences. These might be 
seen in the interpretation of data to be signatures that indicate wme evidence for 
the predominance of one scheme. We have presented specific results for P by way 
of illustration. The elastic form factors are very similar, while the inelastic structure 
factors differ by an amount that is probably measureable. 

Turning to general features it has been established that there =e no dipole allowed 
transitions for j", 2 Q 12 6 (2 j  - 1). Also, the allowed transitions couple states with 
the same seniority. For one-particle states the only allowed single transition is of 
the dipole type, which means that the intensity is finite in the forward direction 
of scattering. Such events contribute to transitions to states with non-equivalent 
electrons, illustrated here by consideration of (j', j) -+ j z .  
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